

QP CODE: 20000684

Reg No

.....

Name

MSc DEGREE (CSS) EXAMINATION, NOVEMBER 2020

Second Semester

M Sc PHYSICS

CORE - PH010204 - CONDENSED MATTER PHYSICS

2019 Admission Onwards BB240736

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight **1** each.

- 1. Define the structure factor.
- 2. Which are different symmetry operations.
- 3. Define fermi energy.
- 4. Do free electron model support energy band gap in materials? Substantiate your answer.
- 5. What do you understand when you see the term "extended scheme representation of energy levels"?
- 6. Good conductors show positive temperature coefficient where as semi conductors show negative temperature coefficient. Explain this phenomenon.
- 7. Write a short note on thermal resistance of solids.
- 8. What is meant by quenching of the orbital angular momentum?
- 9. What is meant by ferromagnetism?
- 10. Briefly explain neutron magnetic scattering.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.

- 11. Derive the reciprocal lattice to FCC lattice.
- 12. Obtain the eigen values and normalized functions for a particle in a one dimensional infinite potential box of side a

- 13. A uniform copper wire whose diameter is 0.16cm carries a steady current of 10A. its density and atomic weight is respectively 8920kg/m3 and 63.5. Calculate the current density and drift velocity of electrons in copper.
- 14. The intrinsic carrier concentration of germanium sample is 2.4X1019/m3 at 300K and its electron and hole mobilities are 0.39 and 0.19 m2v-1s-1 respectively. Calculate the conductivity of the sample
- 15. If the velocity of sound in a solid is taken to be 3X108 m/s and the interatomic distance 6X10-10m, calculate the value of cutoff frequency assuming a linear lattice.
- 16. Describe the quantisation of elastic waves in a diatomic lattice.
- 17. Deduce the expression for the susceptibility of an antiferromagnetism below the Neel temperature.
- 18. Give an account of geomagnetism and biomagnetism.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight **5** each.

- 19. Write Bragg's equation and explain the X-ray diffraction method.
- 20. Explain Kroning-Penny model. How it leads to the concept of Band gap energy.
- 21. Discuss Debye model of lattice heat capacity. Derive an expression for it.
- 22. Explain the different contribution for the formation of domains in a ferromagnetic material and show how the hysteresis curve explained on the basis of domain theory.

(2×5=10 weightage)

