

966	Reg. No
	Name

M.Sc. DEGREE (C.S.S.) EXAMINATION, NOVEMBER 2020

Second Semester

Faculty of Science

Branch I (a): Mathematics

MTO 2C 06—ABSTRACT ALGEBRA

(2012-2018 Admissions)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any **five** questions. Each question has weight 1.

- 1. Find the order of (8, 4, 10) in the group $\rm\,Z_{12}\times Z_{60}\times Z_{24}$.
- 2. Show that $f(x) = x^2 + 8x 2$ is irreducible over Q. Is f(x) irreducible over R.
- 3. Find the degree and basis for $Q(\sqrt{2} + \sqrt{3})$ over $Q(\sqrt{3})$. Justify.
- 4. Show that squaring the circle is impossible.
- 5. Show that no group of order 36 is simple.
- 6. Find the conjugates of $\sqrt{2} \sqrt{3}$ over Q.
- 7. Find the degree over Q of the splitting field over Q of $x^3 1$ in Q[x].
- 8. Is the field $E = Q[\sqrt{2}, \sqrt{3}]$ is separable over Q. Justify your answer.

 $(5 \times 1 = 5)$

Part B

Answer any five questions. Each question has weight 2.

- 9. Prove that the polynomial $x^2 2$ has no zeros in the rational numbers.
- 10. Let $f(x) \in F(x)$ and degree of f(x) is 2 or 3. Show that f(x) is reducible over F if and only if it has a zero in F.

Turn over

20000966

- 11. Show that the field C of Complex numbers is an algebraically closed field.
- 12. Let E be an algebraic extension of a field F. Prove that there exist a finite number of elements $\alpha_1, \alpha_2, \dots, \alpha_n$ in E such that $E = F(\alpha_1, \alpha_2, \dots, \alpha_n)$ if and only if E is a finite extension of F.
- 13. Show that for a prime number p, every group G of order p^2 is abelian.
- 14. Show that the set of all automorphisms of a field E is a group under function composition.
- 15. Show that every field of characteristic zero is perfect.
- 16. Prove that if f(x) is irreducible in F(x), then all zeros of f(x) in \overline{F} have the same multiplicity.

 $(5 \times 2 = 10)$

Part C

Answer any three questions. Each question has weight 5.

- 17. Establish division algorithm for F(x).
- 18. (a) Establish Eisenstein criterion.
 - (b) State and prove unique factorization theorem for polynomials.
- 19. State and prove Kronecker's theorem.
- 20. Show that if E is a finite extension field of a field F, and K is a finite extension field of E, show that K is a finite extension of F and [K : F] = [K : E] [E : F].
- 21. Establish the conjugation isomorphisms of algebraic field theory.
- 22. Prove that a field E where $F \le E \le \overline{F}$ is a splitting field over F if and only if every automorphisms of \overline{F} learing F fixed maps E onto itself and induces an automorphism of E leaving F fixed.

 $(3 \times 5 = 15)$

