

No.	Reg.
)	No

M.Sc. DEGREE (C.S.S.) EXAMINATION, NOVEMBER 2019

Third Semester

Faculty of Science

Branch II—Physics—A—Pure Physics

Elective—Bunch C---Material Science

PH3 EC1—SOLID STATE PHYSICS

(2012—2018 Admissions)

Time: Three Hours

Part A

Maximum Weight: 30

Answer any **six** questions.

Weight 1 each.

- 1. What are Bravais' lattices? Explain.
- 2. Explain Laue spots.
- 3. What makes colour for crystals?
- 4. Explain the behavior of traps.
- 5 . State the principle of semiconductor lasers.
- 6 . Explain the band structure of silicon.
- 7. Differentiate between polarons and polaritons.
- 8. Explain thermodynamic theory of atomic imperfections.
- 9. What are the forces acting on a dislocation?
- 10. Explain twinning.

 $(6 \times 1 = 6)$

Part B

Answer any **four** questions.

Weight 2 each.

- Bring out the physical basis for classifying crystals into 14 Bravais's lattices.
- 12. Discuss on Q-switching and mode locking processes

Turn over

- 13. Give the dielectric function of the electron gas
- 14 Describe the theory and energy level diagram of a four level laser.
- 15. Bring out the classification of imperfections in crystals.
- 16. Discuss Frank-Read mechanism of dislocations

 $(4 \times 2 =$

 ∞

Part C

Answer all questions.

Weight 4 each.

17. (a) What is meant by Bravais lattice? What are the different space lattices in the cubic systems? How many lattice points per unit cell are there in each of these lattices?

- (b) What are point groups and space groups? Give their number for two and three dimensional lattices. List all point groups of a two dimensional lattice.
- 18. (a) Describe thallium activated alkali halides for electroluminescence and give salient features.

9

- **b**) Discuss the theory and experimental setup for Nd:YAG and Nd:glass lasers state applications.
- 19. (a) Obtain an expression for Fermi level in case of an intrinsic semiconductor considering electrons and holes

 O_r

- (b) Describe the band theory for semiconductors.
- 20.(a) Discuss on different diffusion mechanisms with theory and experimental support

 O_r

(d) Describe the dislocations associated with crystals along with experimental evidences.

 $(4 \times 4 = 16)$

