

QP CODE: 20000642

Reg No	
Name	

MSc DEGREE (CSS) EXAMINATION, NOVEMBER 2020

Second Semester

CORE - ME010201 - ADVANCED ABSTRACT ALGEBRA

M Sc MATHEMATICS, M Sc MATHEMATICS (SF)

2019 Admission Onwards 94DF5558

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.

- 1. Show that $lpha\in\mathbb{C}$ is algebraic over \mathbb{Q} where $lpha=1+\sqrt{2}$
- 2. Let E be an extension field of F. Then prove that \overline{F}_E is a subfield of E.
- 3. Prove or disprove: Every UFD is a PID.
- 4. Show that $\mathbb{Z}[i]$ is an integral domain.
- 5. Define multiplicative norm on an integral domain.
- 6. State the Conjugation Isomorphism theorem. Give an example for a conjugation isomorphism.
- 7. Prove that any two algebraic closures of a field F are isomorphic under an isomorphism leaving each element of F fixed.
- 8. Let E be an extension of a field F. When we say that a polynomial in F[x] splits in E? Give an example.
- 9. When an irreducible polynomial is separable over a field? Give an example also.
- 10. Define the nth cyclotomic extension of a field F. Give an example.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.

- 11. Prove that trisecting the angle is impossible.
- 12. If F is a field of prime characteristic p with algebraic closure \overline{F} then prove that $x^{p^n}-x$ has

p^n distinct zeros in \overline{F}

- 13. Define an irreducible element in a PID D. If p is an irreducible in D and p divides the product $a_1a_2...a_n$ for a_i in D, then prove that $p|a_i$ for atleast one i.
- 14. For a Euclidean domain with a Euclidean norm v, prove that v(1) is minimal among all v(a) for nonzero a in D, and also prove that u in D is a unit if and only if v(a) = v(1).
- 15. Prove that the set of all automorphisms of a field E is a group under function composition.
- 16. Describe all extensions of the identity map of $\mathbb Q$ to an isomorphism mapping $\mathbb Q(\sqrt[3]{2},\sqrt{3})$ onto a subfield of \overline{Q} .
- 17. Prove that a finite separable extension of a field is a simple extension.
- 18. State the main theorem of Galois Theory.

 $(6 \times 2 = 12 \text{ weightage})$

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

- 19. a) If E is a finite extension field of a field F and K is a finite extension field of E, then prove that K is a finite extension of F and [K:F]=[K:E][E:F]
 - b) If E is an extension field of F, $\alpha \in E$ is algebraic over F and $\beta \in F(\alpha)$ then prove that $deg(\beta,F)$ divides $deg(\alpha,F)$
- 20. Prove the following.
 - a) Every PID is a UFD.
 - b) If D is a UFD, then for every nonconstant f(x) in D[x], f(x) = (c)g(x), where c belongs to D and g(x) in D[x] is primitive. Also the element c is unique upto a unit factor in D and g(x) is unique upto a unit factor in D.
- 21. Define splitting field over a field F. Prove that a field E, $F \le E \le \overline{F}$, is a splitting field over F if and only if every automorphism of \overline{F} leaving F fixed induces an automorphism of E leaving F fixed.
- 22. a) Prove that every field of characteristic zero is perfect.
 - b) Prove that every finite field is perfect.

 $(2 \times 5 = 10 \text{ weightage})$

