E	21	29
	-	

(Pages: 2)

Reg.	No
Non	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MAY 2015

Second Semester

ELECTRIC AND MAGNETIC PHENOMENA, THERMODYNAMICS, SPECIAL THEORY OF RELATIVITY

(Complementary Physics for Mathematics and Statistics)

[2013 Admission onwards]

Time: Three Hours

Maximum: 60 Marks

Candidates can use Clark's tables and scientific non-programmable calculators.

Part A (Very Short Answer Questions)

Answer all questions briefly. Each question carries 1 mark.

- 1. Explain the terms (i) dielectric constant and (ii) dielectric loss.
- 2. List the various mechanisms of polarization.
- 3. What is ferromagnetic hysteresis?
- 4. Compare diamagnetism and paramagnetism.
- 5. What is the third law of thermodynamics? Explain.
- 6. Define the term entropy. State its units and explain its physical significance.
- 7. There are two exactly identical twin sisters. One of the twins stays home while the other takes off on a long fast trip through space. On her return how the age of the traveller twin will be affected? Give reason.
- 8. What is the time dilation in special relativity?

 $(8 \times 1 = 8)$

Part B (Brief Answer Questions)

Answer any **six** questions. Each question carries 2 marks.

- 9. Explain electrostatic shielding. What are its applications?
- 10. With appropriate examples, explain how dielectric materials are classified? What are their applications?
- 11. How do you explain the occurrence of diamagnetism, paramagnetism and ferromagnetism in solids?
- 12. Explain why does the acceleration of a magnet falling through a long solenoid decrease.
- 13. What is Carnot's theorem? What is the message driven home from this theorem?

Turn over

- 14. Write down the relationship between (i) pressure and volume ; (ii) temperature and volume ; (iii) pressure and temperature for an adiabatic change.
- 15. State second law of thermodynamics. Explain the meaning of first and second kinds of perpetual motion in terms of first and second laws of thermodynamics.
- 16. Show that the entropy is a point function of the state of the system, i.e., the change in entropy of a substance in change of state does not depend on the reversible path chosen between the two states.
- 17. State the fundamental postulates of special theory of relativity and deduce the Lorentz transformations.
- 18. Discuss the mass variation according to special theory of relativity.

 $(6 \times 2 = 12)$

Part C (Problems/Derivations/Short Essays)

Answer any **four** questions. Each question carries 4 marks.

- 19. A parallel plate capacitor has circular plates of 8.0 cm. radius and 1.0 mm. separation of air. What charge will appear on the plates if p.d. of 60 volts is applied?
- 20. A circular ring of iron is wound uniformly with 1000 turns of wire. Its mean diameter is 0.2 m. and its cross-section is 4 cm². Determine the current which will produce of flux of 2000 lines, assuming the permeability to be 800.
- 21. Calculate the molar entropy change when an ideal gas expands isothermally and reversibly from an initial volume of 1L to a final volume of 2L at 298 K.
- 22. In a PV diagram, an adiabatic and an isothermal curve for an ideal gas intersect. Show that the absolute value of the slope of the adiabatic is γ times that of the isothermal.
- 23. Prove that $x^2 + y^2 + z^2 = c^2 t^2$ is invariant under Lorentz transformation.
- 24. In the laboratory the life-time of a particle moving with speed 2.8×10^{10} cm/sec. is found to be 2.5×10^{-7} sec. Calculate the proper life-time of the particle.

 $(4 \times 4 = 16)$

Part D (Long Answer/Essay Questions)

Answer any **two** questions in detail. Each question carries 12 marks.

- 25. Explain the phenomenon of polarization when a dielectric slab is subjected to an electric field; with the help of neat sketches. How this phenomenon reduces the electric field inside the dielectric?
- 26. What are the characteristics of paramagnetic, diamagnetic, ferromagnetic and ferrimagnetic substances? Explain their behaviour with the help of examples.
- 27. With neat sketches, discuss the carnot engine as a refrigerator and obtain an expression for its performance.
- 28. What is Galilean transformation? Derive Galilean transformation equations. Prove the laws of mechanics are identical in all inertial frames.

 $(2 \times 12 = 24)$