

Reg.	No
Name	e

M.Sc. DEGREE (C.S.S.) EXAMINATION, JUNE 2019

Second Semester

Faculty of Science

Branch: Chemistry

AN 2C 07/AP 2C 07/CH 2C 07/PH 2C 07/POH 2C 07—CHEMICAL BONDING AND COMPUTATIONAL CHEMISTRY

[Common to all Branches of Chemistry]

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Section A

Answer any ten questions.

Each question carries weight 1.

- 1. What is a variational parameter? How is it used?
- 2. What are Slater type orbitals?
- 3. What is the importance of Roothen's concept of basis functions?
- 4. What are the limitations of Born Oppenheimer approximations?
- 5. What are transition moment integrals?
- 6. Using HMO method, how will you calculate free valancy?
- 7. Discuss the importance of Woodward-Hoffmann rules.
- 8. What are correlation diagrams? Why is it required?
- 9. Distinguish between double zeta and triple zeta sets.
- 10. What are the important features of AMBER?
- 11. What are Kohn Sham orbitals? What is its physical meaning?
- 12. Construct a firefly programme for the geometry optimization.
- 13. Identify the steps involved in calculating ionization energies.

 $(10 \times 1 = 10)$

Turn over

19001839

Section B

Answer any **five** questions. Each question carries weight 2.

- 14. Discuss the qualitative approach of Hellmann Feynmann theorem.
- 15. Briefly explain the quantum mechanical treatment of sp³ hybridization.
- 16. Distinguish between singlet and triplet state functions.
- 17. Discuss the molecular orbital treatment of a planar conjugated molecule.
- 18. Briefly explain the SALC construction of C3v and D3h point groups.
- With an example, compare the molecular mechanics of computation studies, semiempirical and DFT methods.
- 20. Discuss the principles of configuration interaction.
- 21. What is Z-matrix? Discuss the Z-matrix of a diatomic molecule.

 $(5 \times 2 = 10)$

Section C

Answer any **two** questions. Each question carries weight 5.

- 22. Estimate the energy of the ground-state wave function within first-order perturbation theory of a system with particle in a one dimensional box.
- 23. By taking suitable examples compare the molecular orbital theory and valance band theory.
- 24. (a) Discuss the qualitative ideas on post Hartree-Fock methods.
 - (b) Write an input file for the molecular mechanics methods using computational studies.
- 25. (a) Distinguish between generalized gradient approximation and local density approximation.
 - (b) Explain the applications of quantum mechanics.

 $(2 \times 5 = 10)$

