

M.Sc. DEGREE (C.S.S.) EXAMINATION, DECEMBER 2018

First Semester

Faculty of Science

Branch I (a): Mathematics

MT01C03—MEASURE THEORY AND INTEGRATION

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any **five** questions. Each question carries weight 1.

- 1. Define Lebesgue outer measure $m^*(A)$ of a subset A of \mathbb{R} .
- 2. Give an example of a continuous function g and a measurable function h such that h o g is not measurable.
- 3. Show that if f is integrable over E, so is |f|. Does the integrability of |f| imply that of f. Justify.
- 4. State Vitali lemma.
- 5. State Lebesgue dominated convergence theorem.
- 6. Show that linear combination of two measures v_1 , v_2 that are absolutely continuous with respect to μ is absolutely continuous.
- 7. State Fubini's theorem.
- 8. If $f_n \to f$ in measure. Show that there is a subsequence $\{f_{n_k}\}$ which converges to f a.e.

 $(5 \times 1 = 5)$

Part B

Answer any **five** questions. Each question carries weight 2.

- 9. Show that every Borel set is measurable.
- 10. Show that the outer measure is translation invariant.
- 11. Let $\langle f_n \rangle$ be a sequence of integrable functions such that $f_n \to f$ a.e. with f integrable. Prove that $f | f f_n | \to 0$ if and only if $f | f_n | \to f | f |$.

Turn over

18002223

- 12. Let $< f_n >$ be a sequence of non-negative measurable functions that converge to f, and suppose $f_n \le f$ for each n. Prove that $\int f = \lim_{n \to \infty} \int f$.
- 13. Show that if f is integrable with respect to μ , then for a given $\epsilon > 0$ there is a simple function ϕ such that $\int |f \phi| d\mu < \epsilon$.
- 14. Prove that Lebesgue decomposition is unique.
- 15. Show that if a sequence of measurable functions converges in measure, then the limit function is unique a.e.
- 16. By integrating $\frac{e^{-y} \sin 2xy}{y}$, show that $\int_0^\infty \frac{e^{-y} \left(\sin^2 y\right)}{y} = \frac{1}{4} \log 5$.

 $(5 \times 2 = 10)$

Part C

Answer any three questions. Each question carries weight 5.

- 17. Suppose $\langle f_n \rangle$ be a sequence of measurable functions. Prove that $\overline{\lim} f_n$ and $\underline{\lim} f_n$ are measurable.
- 18. State and prove Monotone convergence theorem.
- 19. Show that there is a sequence of non-negative simple functions (each of which vanishes outside a set of finite measure) that converges to a non-negative measurable function.
- 20. State and prove Radon-Nikodym theorem.
- 21. Let $f_n \to f$ a. e. Suppose that $|f_n| \le g$ (an integrable function) prove that $f_n \to f$ a.u.
- 22. State and prove Fubini's theorem.

 $(3 \times 5 = 15)$

