QP CODE: 22001594

M Sc DEGREE (CSS) EXAMINATION, JULY 2022

First Semester

CORE - CH500103 - QUANTUM CHEMISTRY AND GROUP THEORY

M Sc CHEMISTRY, M Sc ANALYTICAL CHEMISTRY, M Sc APPLIED CHEMISTRY, M Sc PHARMACEUTICAL CHEMISTRY, M Sc POLYMER CHEMISTRY 2019 ADMISSION ONWARDS

053E6CA3

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.

- 1. What is meant by pitch and fold of screw axis?
- 2. What are the features of an abelian group?
- 3. What are subgroups? Explain using an example.
- 4. Formulate the matrix representation for S_n .
- 5. What is meant by trace of a matrix? Explain with the help of an example.
- 6. How does photoelectric effect account for the particle nature of radiation?
- 7. Prove that operator multiplication can be non commutative.
- 8. Explain the significance of spherical harmonics?
- 9. Explain the term 'Ladder operator'.

10. What are symmetric and antisymmetric wave functions?

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.

11. List out the symmetry operations generated by the following: S₃ & S₆. Also identify the distinct operations.

Page 1/2

Turn Over

- 12. Identify the symmetry elements present and hence the point group of benzene.
- 13. Assign Mulliken symbols and substantiate your answer.

D _{3h}	Е	$2C_3$	3C2	σ _h	2S3	3σ _v
Γ ₁	1	1	1	1	1	1
Γ_2	1	1	-1	1	1	-1
Γ_3	2	-1	0	2	-1	0
Γ_4	1	1	1	-1	-1	-1
Γ_5	1	1	-1	-1	-1	1
Γ ₆	2	-1	0	-2	1	0

- 14. What are isomorphic groups. Illustrate using C_{2v} and C_{2h} point group.
- 15. Discuss the case of the particle in a one dimensional box with one finite potential barrier.
- 16. Deduce an expression for total energy of a simple harmonic oscillator using classical mechanics.
- 17. Describe the Eigen values and eigen functions of a particle in a ring.
- 18. Evaluate [L_x L_z]

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight 5 each.

- 19. Applying Great Orthogonality theorem, construct the character table for C_{3v} point group.
- 20. Discuss the concept of SALCs and construct the SALCs for NH_3 molecule.
- 21. Solve the Schrodinger equation for a particle in 3 dimensional box.
- 22. Set up the Schrodinger equation for hydrogen atom, in spherical polar coordinates and separate it into three ordinary differential equations by the method of separation of variables.

(2×5=10 weightage)