19002714

Reg. No
Name

M.Sc. DEGREE (C.S.S.) EXAMINATION, OCTOBER 2019

First Semester

Faculty of Science

AN IC 03/AP IC 03/PH IC 03/POH IC 03—QUANTUM CHEMISTRY AND GROUP THEORY

(Common to all Branches of Chemistry)

[2012-2018 Admissions]

Time: Three Hours

Maximum Weight: 30

Section A

Answer any **ten** questions. Each question carries a weight of 1.

- 1. Given below are Criterion functions. State which of them are eigen functions of $\frac{d^2}{dx^2}$. If so give the eigen values.
 - (a) $A + B \sin \alpha x$.

(b) $A \cdot e^{ax^2}$.

- 2. Define Degeneracy.
- 3. Explain the term spherical harmonics. Write two example.
- 4. What are Hermite Polynomials? Give one example.
- 5. Draw the radial distribution function for 2s, 2p and 3s orbitals?
- 6. What are the characteristic operations of an s_6 axis? Construct their matrix representation in the basic (x, y, z).
- 7. Write down the character of the reducible representation of composition:

$$\Gamma = A_1 + A_2 + B_1 + B_2$$
 of the C_{2V} group.

- 8. Generate matrices for s_3 and i.
- 9. What is meant by optical activity? What are the criterion for it?
- 10. What are the selection rules for the vibrational absorption of a molecule?

Turn over

19002714

- 11. Explain the term pre-dissociation.
- 12. What are the internal standards used in ESR spectroscopy?
- 13. In what respects the quantum mechanical harmonic oscillator differs from classical oscillator?

 $(10 \times 1 = 10)$

Section B

Answer any five questions.

Each question carries a weight of 2.

- 14. Show that the eigen functions corresponding to different eigen values of a Hermitian operator are always orthogonal.
- 15. Compare the Cartesian and spherical polar co-ordinates.
- 16. Evaluate the commutators $\left[\hat{x} \, \hat{P}r\right]$ and $\left[\hat{L}_x, \hat{L}_y\right]$.
- 17. Is wave function of H atom is $\psi = \frac{1}{\sqrt{\pi}} \left(\frac{1}{a_0}\right)^{3/2} e^{-r/a_0}$, show that maximum probability for finding the electron is at $r = a_0$.
- 18. Find the similarity transform and inverse of any one vertical plane in NH₃.
- 19. What is meant by block diagonalization? Explain its importance.
- 20. Explain the important properties of irreducible representations.
- 21. Outcome the principle of ESR spectroscopy.

 $(5 \times 2 = 10)$

Section C

Answer any **two** questions. Each question carries a weight of 5.

- 22. (a) State and explain wave function postulate and expectation value postulate of quantum mechanics.
 - (b) Explain the discovery of spin using an experiment.

19002714

- 23. Show that the normalised wave function for a particle in a 3–D box with sides of length a,b and c is $\psi(x,y,z) \left(\frac{8}{abc}\right)^{1/2} \sin\left(n_x \pi \frac{x}{a}\right) \sin\left(n_y \frac{\pi_y}{b}\right) \sin\left(n_z \frac{\pi_z}{c}\right)$ and discuss the degeneracies of the first few energy levels.
- 24. (a) Set up Schrödinger wave equation for the hydrogen atom. Transform the co-ordinates and separate the variables.
 - (b) Discuss briefly the origin of Raman Spectrum.
- 25. Apply orthogonality theorem for C_{3v} point group and derive the character table.

 $(2 \times 5 = 10)$

