- 34. (a) Assume that "for all positive integers n, if n is greater than 4, then n^2 is less than 2^n is true. Use universal modus ponens to show that $100^2 < 2^{100}$.
 - (b) Prove the contradiction that if 3n + 2 is odd then n is odd.
 - (c) Use proof by cases to show that $n^2 \ge n$ for every integer n.
- 35. (a) Prove that every composite number can be expressed as the product of prime factors.
 - (b) If n is a positive integer and a is prime to n, prove that $a^{\phi(n)} \equiv 1 \pmod{n}$.
 - (c) Evaluate ϕ (5040).

 $(2 \times 15 = 30)$