	1	1	0	0
E	1	U	J	2

-						-
(P	a	ø	e	S	:	2)

Reg.	No
D.T.	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2015

Fourth Semester

Complementary: Chemistry—ADVANCED PHYSICAL CHEMISTRY—II (For students who have opted Physical Sciences and Geology as main)

[Prior to 2013 Admissions]

Time: Three Hours	Maximum We

ime :	Thr	ee Hours Maximum Weight : 25
		Section A
		Answer all questions. * Each bunch of four questions carries a weight of 1.
I.	1	The vibrational spectra of molecules are obtained in ——— region.
	2	A molecule which rotates such that its internuclear bond distances do not change during rotation is called a ———.
	3	Zero point energy is ———.
	4	Mathematical expression of Faradays first law of electrolysis is ———.
II.	5	In electrolytic conduction, flow of electricity is due to flow of ———.
	6	A Galvanic cell is a device in which ———— energy is converted into electrical energy by redox reaction.
	7	For a spontaneous cell reaction, the e.m.f. of the cell should be ———.
	8	One example for Auxochrome is ———.
III.	9	One concentration cell is ———.
	10	Give the oxidation no of chromium in K ₂ Cr ₂ O ₇ .
	11	One example of Bioluminescence is ———.
	12	What do you mean by Blue Shift?
IV.	13	Quantum yield is ———.

14 Selection rule for vibrational spectrum obeying Harmonic oscillator is -

15 Define electrochemical equivalent.

16 One Redox indicator is -

 $(4 \times 1 = 4)$

Turn over

Section B

Answer any five questions. Each question carries a weight of 1.

17 Which of the following molecules will be microwave active :-

CO2, CO, H2, HCl. Give reason for your answer.

- 18 Sketch the fundamental modes of vibration of H2O molecule and explain its IR activity.
- 19 Aqueous solution of copper sulphate is acidic. Give reason.
- 20 How do specific and molar conductance vary on dilution. Give reason for your answer.
- 21 What is Fluorescence, explain?
- 22 What is Quin-hydrone electrode?
- 23 What do you mean by liquid function potential? How can it be eliminated?
- 24 State and explain Oswald's dilution law.

 $(5 \times 1 = 5)$

Section C

Answer any four questions. Each question carries a weight of 2.

- 25 What are Fuel cells? How is hydrogen oxygen fuel cell constructed?
- 26 (a) State Frank-Condon principle.
 - (b) What is chemi Luminescence, explain?
- 27 Discuss any two methods used for the determination of order of reaction.
- 28 State Kohlrausch's law and explain any two applications of the law.
- 29 Give one oxidation reduction titrations and give the reactions involved in it.
- 30 Discuss the principles of the following conductance titration:
 - (i) HCl × NaOH.
 - (ii) CH3COOH × NaOH.

 $(4 \times 2 = 8)$

Section D

Answer any two questions. Each question carries a weight of 4.

- 31 Define Transport number. How will you determine the transport number of an ion by Hittorf's method?
- 32 Describe glass electrode and explain how it can be used to measure the pH of a solution.
- 33 (a) Explain how rotational spectroscopy can be used to calculate the bond lengths in Diatomic molecules.
 - (b) What are the different fundamental modes of vibration of ${\rm CO_2}$ molecule. Classify them as IR active and IR inactive. Give reason for your answer.

 $(2 \times 4 = 8)$