

Ш	-	002	_	

Reg. No	*****
Name	

M.Sc. DEGREE (C.S.S.) EXAMINATION, OCTOBER 2019

First Semester

Faculty of Science

Branch I (a): Mathematics

MT 01C02—BASIC TOPOLOGY

(2012—2018 Admissions)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any **five** questions. Each question has weight 1.

- 1. Define Topology on a non-empty set X. Show that intersection of two topologies is again a topology on X.
- 2. Prove that interior of a set is the same as the complement of the closure of the complement of the set.
- 3. Define homeomorphism. Does the projection map $\pi_1 : \mathbb{R}^2 \to \mathbb{R}$ defined by $\pi_1(x,y) = x$, closed? Justify.
- 4. Prove that composition of two quotient maps is again a quotient map.
- 5. Prove that continuous function preserves pathconnectedness.
- 6. Show that every nonempty connected subset is contained in a unique component.
- 7. Show that normality is a weakly hereditary property.
- 8. Prove that every subset a topological space X is closed if and only if the space X is a T_1 space.

 $(5 \times 1 = 5)$

Part B

Answer any **five** questions. Each question has weight 2.

- 9. Prove that a discrete space is second countable if and only if the underlying set is countable.
- 10. Prove that in a metric space X, a point y is in the closure of a set A if and only if there exists a sequence $\{x_n\}$ such that $x_n \in A$ for all n and $\{x_n\}$ converges to y in X.
- 11. Prove that every closed surjective map is a quotient map.

Turn over

19002716

- 12. Show that every second countable space is Lindeloff.
- 13. Prove that topological product of any finite number of connected spaces is connected.
- 14. Show that a subset of \mathbb{R} is disconnected if and only if it is not an interval.
- 15. Prove that a continuous bijection from a compact space onto a Hasdorff space is a homeomorphism.
- 16. Prove that regularity is a hereditary property.

 $(5 \times 2 = 10)$

Part C

Answer any **three** questions. Each question has weight 5.

- 17. (a) Describe subspace toplogy with suitable examples, and prove the following, let $A \subset X$ where X is a topological space. If $E \subset A$, then $Cl_A(E) = A \cap Cl_X(E)$.
 - (b) Show that $\overline{A} = A \cup A'$ for any subset A of a topological space X.
- 18. (a) Suppose X is a compact topological space, and A ⊂ X is closed in X. Prove that A is also compact in its relative topology.
 - (b) Prove that the product topology is the weak toplogy determined by the projection functions.
- 19. Prove that every closed and bounded interval is compact.
- 20. (a) Prove that X is locally connected if and only if X has a base consisting of connected subsets.
 - (b) Show that every continuous real valued function on a compact space is bounded and it attains its extrema.
- 21. Show that every regular Lindeloff space is normal.
- 22. (a) Show that every continuous, injection from a compact space into a Hausdorff space is an embedding.
 - (b) Prove that a compact subset in a Hausdorff space is closed.

 $(3 \times 5 = 15)$

