

Name...

Reg. No	
•	Notice V

M.Sc. DEGREE (C.S.S.) EXAMINATION, DECEMBER 2018

First Semester

Faculty of Science

Branch I (a): Mathematics

MT01C03—MEASURE THEORY AND INTEGRATION

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any **five** questions. Each question carries weight 1.

- 1. Define Lebesgue outer measure $m^*(A)$ of a subset A of $\mathbb R$.
- 2 measurable. Give an example of a continuous function g and a measurable function h such that h og is
- ω Show that if f is integrable over E, so is |f|. Does the integrability of |f| imply that of f. Justify.
- 4. State Vitali lemma.
- 5. State Lebesgue dominated convergence theorem
- 6 Show that linear combination of two measures v_1, v_2 that are absolutely continuous with respect to is absolutely continuous.
- 7. State Fubini's theorem.
- ∞ \mathbf{If} in measure. Show that there is a subsequence $\left\{f_{n_k}\right\}$ which converges to f a.e.

 $(5 \times 1 =$

Part B

Answer any **five** questions.

Each question carries weight 2.

- 9. Show that every Borel set is measurable.
- 10. Show that the outer measure is translation invariant.
- that $f|f-f_n| \to 0$ if and only if $f|f_n| \to f|f|$. be a sequence of integrable functions such that $f_n \to f$ a.e. with f integrable. Prove

Turn over

- 12. Let $< f_n >$ be a sequence of non-negative measurable functions that converge to f, and suppose f_n $\leq f$ for each n. Prove that $\int f = \lim_{n \to \infty} \int f$.
- 13. such that $\int |f - \varphi| d\mu < \epsilon$. Show that if f is integrable with respect to μ , then for a given $\epsilon > 0$ there is a simple function ϕ
- 14. Prove that Lebesgue decomposition is unique.
- 15. unique a.e. Show that if a sequence of measurable functions converges in measure, then the limit function is
- 16 By integrating $\frac{e^{-y}\sin 2xy}{y}$, show that $\int_0^\infty \frac{e^{-y}\left(\sin^2y\right)}{v} =$ $\frac{1}{4}\log 5.$

$$(5 \times 2 = 10)$$

Part C

Answer any three questions. Each question carries weight 5

- 17. Suppose measurable. $\langle f_n \rangle$ be a sequence of measurable functions. Prove that $\lim f_n$ and $\lim f_n$ are
- 18. State and prove Monotone convergence theorem.
- 19. set of finite measure) that converges to a non-negative measurable function. Show that there is a sequence of non-negative simple functions (each of which vanishes outside a
- 20. State and prove Radon-Nikodym theorem.
- 21. $\rightarrow f$ a. e. Suppose that $\left| f_n \right| \le g$ (an integrable function) prove that f_n
- 22. State and prove Fubini's theorem

 $(3 \times 5 = 15)$

