ш	11 11	ш	ш	11 11 1	ш
ш	ш	ш	ш	11 10 1	ш
ш		ш	ш	11 11 1	ш
ш	ш	ш	ш	ш	ш
	11.11				
	19	HOO!	27'	17	

Reg.	No
Name	ρ

M.Sc. DEGREE (C.S.S.) EXAMINATION, OCTOBER 2019

First Semester

Faculty of Science

Branch I (a): Mathematics

MT 01 C03—MEASURE THEORY AND INTEGRATION

(2012-2018 Admissions)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any **five** questions. Each question has weight 1.

- 1. Show that translates of measurable sets are measurable.
- 2. Define measurable function. Show that sum of two measurable functions is again measurable.
- 3. State Vitali lemma.
- 4. Suppose φ , ψ are simple functions which vanish outside a set of finite measure. Prove that $\int (a\varphi + b\psi) = a \int \varphi + b \int \psi$.
- 5. State Lebesgue dominated convergence theorem.
- 6. State Radon-Nikodym theorem.
- 7. Define almost uniform convergence with an example
- 8. Let μ and ν be complete measures. Show that $\mu \times \nu$ need not be complete.

 $(5 \times 1 = 5)$

Part B

Answer any **five** questions. Each question has weight 2.

- 9. Suppose f is a measurable real-valued function and g a continuous function defined on $(-\infty, \infty)$. Show that $g \circ f$ is measurable.
- 10. Prove that the composition of two Borel measurable functions is again Borel measurable.

Turn over

10009717

11. Show that
$$R \int_{a}^{\overline{b}} f(x) dx = b - a$$
 and $R \int_{\underline{a}}^{b} f(x) dx = 0$ for the function

$$f(x) = \begin{cases} 0, & x \text{ is irrational} \\ 1, & x \text{ is rational} \end{cases}.$$

- 12. Let $\langle f_n \rangle$ be a sequence of integrable functions such that $f_n \to f$ a.e with f integrable. Prove that $\int |f f_n| \to 0$ if and only if $\int |f_n| \to \int |f|$.
- 13. Show that if f is integrable with respect to μ , then for a given $\epsilon > 0$ there is a simple function ϕ such that $\int |f \phi| d\mu < \epsilon$.
- 14. Give an example to show that Hahn decomposition need not be unique.
- 15. Show that $f_n \to f$ in measure, if $f_n \to f$ a.u
- 16. If $f_n \to f$ in measure, then prove that $|f_n| \to |f|$ in measure.

 $(5 \times 2 = 10)$

Part C

Answer any **three** questions. Each question has weight 5.

- 17. Show that there exist Non measurable sets.
- 18. State and prove Monotone convergence theorem.
- 19. State and prove bounded convergence theorem.
- 20. Explain Caratheodory extension of measures
- 21. Let $f_n \to f$ a.e. Suppose that $|f_n| \le g$ (an integrable function) prove that $f_n \to f$ a.u.
- 22. State and prove Fubini's theorem.

 $(3 \times 5 = 15)$

