

19001690

Reg.	No

Name.....

M.Sc. DEGREE (C.S.S.) EXAMINATION, JUNE 2019

Second Semester

Faculty of Science

Branch I (a)-Mathematics

MT 02 C10—REAL ANALYSIS

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

· Part A

Answer any **five** questions. Each question has weight 1.

- 1. Prove the additive property of arc-lengths.
- 2. When a function u is said to define a change of parameter?
- 3. Prove that $\int_{a}^{b} d\alpha(x) = \alpha(b) \alpha(a)$, directly from the definition of Riemann-Stieltjes integral.
- 4. State the additive property for upper Stieltjes integrals.
- 5. For $m = 1, 2, 3, \ldots$ and for n = 1, 2, 3. Let $S_{m,n} = \frac{m}{m+n}$ show that $\lim_{n \to \infty} \lim_{m \to \infty} S_{m,n} \neq \lim_{m \to \infty} \lim_{n \to \infty} S_{m,n}$.
- 6. State Stone-Weierstrass theorem.
- 7. Explain: Algebraic completeness of complex field.
- 8. Obtain the periods of the function C and S.

 $(5 \times 1 = 5)$

Part B

Answer any **five** questions. Each question has weight 2.

- 9. Define a monotonic function. If f is monotonically decreasing on [a, b]. Prove that f is of bounded variation on [a, b].
- 10. Show that $f(x) = x^2 \cos(\frac{1}{x})$ if $x \neq 0$ and f(0) = 0 is of bounded variation on [0, 1].

Turn over

- 11. Suppose f is monotonic on [a, b] and if α is continuous on [a, b]. Prove that f is Riemann-Stieltjes integrals on [a, b].
- 12. State and prove additive property of Riemann-Stieltjes integrals.
- 13. Define uniform convergence of a sequence of function f_n on a set E to a function f. If $\{f_n\}$ and $\{g_n\}$ converge uniformly on a set E, show that $\{f_n + g_n\}$ also converge uniformly on E.
- 14. Let $f_n(x) = x$ for all $x \in E$ and all n and let $g_n(x) = \frac{1}{n}$ for all $x \in E$ and all n. Examine the uniform convergence of $\{f_n\}, \{g_n\}$ and $\{f_ng_n\}$.
- 15. Evaluate $\lim_{x \to 0} \frac{e (1+x)^{1/x}}{x}$.
- 16. Prove that $\sum \frac{1}{p}$ diverges; the sum extends over all primes.

 $(5 \times 2 = 10)$

Part C

Answer any **three** questions. Each question has weight 5.

- 17. Define total variation. Establish additive property of total variation.
- 18. (a) State and prove fundamental theorem of calculus.
 - (b) State and prove integration by parts theorem on R S integrals.
- 19. (a) Write sufficient condition for Riemann Stieltjes integrable and prove.
 - (b) Establish linearity property of Riemann Stieltjes integrals.
- 20. If f is continuous on [0, 1] and if:

$$\int_{0}^{1} f(x) x^{n} dx = 0 (n = 0, 1, 2, ...).$$
Prove that $f(x) = 0$ on $[0, 1]$.

- 21. Give example to show that uniform convergence of $\{f_n\}$ implies nothing about the sequence $\{f_n^1\}$. State the hypotheses required for the assertion that $f_n^1 \to f^1$ if $f_n \to f$ and prove.
- 22. Define the exponential, logarithmic and trigonometric functions. Establish their properties and describe the relationship between them.

 $(3 \times 5 = 15)$

