E	0	A	A	0
E	hud	4	4	South

-			Charles Inc.
(II)	ges		9
LE 21	26.8	-	

Reg.	No

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, NOVEMBER 2015

First Semester

Core Course-FOUNDATION OF MATHEMATICS

(Common for Model I and Model II B.Sc. Mathematics and B.Sc. Computer Applications)
[2013 Admission onwards]

Time: Three Hours

Maximum: 80 Marks

Part A (Short Answer Questions)

Answer all questions.

Each question carries 1 mark.

- 1. Draw a Venn diagram representing $\bar{A} \cap \bar{B}$.
- 2. Define the floor function.
- 3. When is a relation on a set said to be antisymmetric?
- 4. Represent the relation $\{(1,1),(1,2),(1,3)\}$ on the set $\{1,2,3\}$ with a matrix (with elements of the set listed in increasing order).
- 5. Define equivalence relation on a set.
- 6. Write the inverse of the conditional statement "If it snows tonight, then I will stay at home".
- 7. What do you mean by an exhaustive proof?
- 8. State the fundamental theorem of arithmetic.
- 9. Find the number of divisors of 2000, and their sum.
- 10. Find the remainder when 2^{1000} is divided by 17.

 $(10 \times 1 = 10)$

Part B (Brief Answer Questions)

Answer any eight questions. Each question carries 2 marks.

- 11. If A and B are sets prove that $A B = A \cap \overline{B}$.
- 12. Let $f,g:\mathbb{Z}\to\mathbb{Z}$ be such that f(x)=2x+3 and g(x)=3x+2. Find $(f\circ g)(1)$ and $(g\circ f)(1)$.
- 13. Give an example of a bijection from the set of all positive integers to the set of all odd positive integers. Justify your example.

Turn over

- 14. Define a directed graph. Draw the directed graph of the relation $\{(1,1),(1,2),(2,3),(3,1),(3,3)\}$.
- 15. Find the equivalence classes of the "congruence modulo 4" relation.
- 16. Prove that the divisibility relation is a partial order relation on the set of positive integers.
- 17. By constructing truth tables show that $p \to q$ and $\neg p \lor q$ are logically equivalent.
- 18. Show that $\neg \forall x (P(x) \rightarrow Q(x))$ and $\exists x (P(x) \land \neg Q(x))$ are logically equivalent.
- 19. What is a direct proof? Use a direct proof to prove that the square of an even number is an even number.
- 20. If a is prime to b and each of these numbers is a divisor of N, prove that ab is a divisor of N.
- 21. Find the highest power of 7 contained in 2000.
- 22. Prove that for any integer n, $n^5 n$ is divisible by 10.

 $(8 \times 2 = 16)$

Part C (Short Essay Type Questions)

Answer any six questions. Each question carries 4 marks.

- 23. State De Morgan's laws for sets. Show that $\overline{A \cup (B \cap C)} = (\overline{C} \cap \overline{B}) \cap \overline{A}$.
- 24. Let $f: B \to C$ and $g: A \to B$ be one to one and onto functions. Prove that $f \circ g$ is one to one and onto.
- 25. If x is a real number prove that $\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor$.
- 26. Explain how to construct the Hasse diagram of a partial order on a finite set. Illustrate with an example.
- 27. Prove that $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ are logically equivalent.
- 28. Express the statement " $\lim_{x\to a} f(x) = L$ " using quantifiers.
- 29. Prove that the product of any n consecutive integers is divisible by $\lfloor n \rfloor$.
- 30. If m is prime to n, prove that $\varphi(m n) = \varphi(m) \varphi(n)$, where φ is the Euler's function.
- 31. If p is a prime of the form $4^m + 1$, prove that $\left\lfloor \frac{1}{2}(p-1) \right\rfloor$ is a solution of the congruence $x^2 + 1 \equiv 0 \pmod{p}$.

 $(6 \times 4 = 24)$

Part D (Essays)

Answer any two questions. Each question carries 15 marks.

- 32. (a) Define the union, intersection, difference and symmetric difference of two sets A and B. Find these if A = {1, 2, 3, 4, 5} and B = {4, 5, 6, 7, 8}.
 - (b) Is the function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$ invertible? Justify your answer.
 - (c) Prove that the set of positive rational numbers is countable.
- 33. (a) Prove that a relation R on a set A is transitive if and only if $\mathbb{R}^n \subseteq \mathbb{R}$ for $n = 1, 2, 3, \ldots$
 - (b) List the ordered pairs in the equivalence relation R produced by the partition:

$$A_1 = \{1,2,3\}, A_2 = \{4\}, A_3 = \{5,6\} \text{ of the set } S = \{1,2,3,4,5,6\}.$$

- (c) Obtain the maximal elements and minimal elements of the poset {2, 4, 5, 10, 12, 20, 25} ordered by divisibility.
- 34. (a) Express the negation of the statement $\forall x \exists y(xy=1)$ so that no negative precedes a quantifier.
 - (b) Prove by contraposition that if n=ab where a and b are positive integers, then $a \le \sqrt{n}$ or $b \le \sqrt{n}$.
 - (c) Prove by contradiction that "if 3n + 2 is odd, then n is odd".
- 35. (a) Prove that the sequence of primes is endless.
 - (b) If $2^n + 1$ is a prime then prove that n is a power of 2.
 - (c) State and prove Wilson's theorem.

 $(2 \times 15 = 30)$