

A STUDY ON SEQUENCING MODELS BY JYOTHY THOMAS **Assistant Professor Department of Mathematics** Deva Matha College Kuravilangad

Definition: Selection of an appropriate order for a series of job to be done on a number of service facilities so as to optimize the total effectiveness (may be time, cost etc which is a function of the order)

BASIC TERMS

Number of machines
Processing order
Processing time
Idle time on a machine
Total elapsed time
No Passing Rule

Machine operations in lathe

 Job
 1
 2
 3
 4
 5
 6

 Turning
 3
 12
 5
 2
 9
 11

 Threading
 8
 6
 4
 6
 3
 1

 Knurling
 13
 14
 9
 12
 8
 13

Materials 1, 2, 3, 4, 5,6 (Jobs)

Turning

Threading

Knurling

Machine operations in lathe

Machine order fixed – Turning Threading Knurling Job order 123456 132456 ... 234561 243561 . . . 345612 354612 . . . 456123 465123 . . . 561234 516234 . . . 612345 621345 . . . Total 6! Orders From these find the order which minimizes time/ cost This is a 6 job – 3 machine problem

Sequencing in computer systems

General Sequencing problem

n jobs on m machines ▶ (n!) ^m possible sequences Find the sequence minimizing the total time \blacktriangleright When n =4, m =5 there are (4!) 5 = 7962624 possible sequences Enumeration impossible for even smaller m and n

General FormJobs12nMac A a_1 a_2 nMac B b_1 b_2 ...

Gnatt Chart

14

Consider the two job -Two machine problem

5

8

Job	J ₁	J ₂
Machine A	3	5
Machine B	5	4

Total Time = 12

Total Time = 14

Optimum_Sequence_Algorithm

*Illustration:*A book binder has a printing press, a binding machine & the manuscripts of different books. The processing times are given. Determine the optimum sequence.

BOOK	1	2	3	4	5	6
Printing Time (hrs)	30	120	50	20	90	100
Binding Time (hrs)	80	100	90	60	30	10

Optimum sequence Algorithm

Find the smallest processing time. If it is for first machine, place the job in first available position of the sequence. If it is for second machine place the job in the last available position of the sequence. ► If there is a tie

Optimum sequence Algorithm

(i) among the two machines (a_k = b_r) place job corresponding to first machine
(job k) in first available position of the sequence and the job corresponding to second machine (job r) in the last available position of the sequence.
(ii) among same machine (a_k = a_r / b_k = b_r), break the tie arbitrarily

6

Cross off the jobs already assigned and repeat the above procedure

Optimum sequence Algorithm

Calculate the idle times and total elapsed time

Books	Printing	Binding	Idle times		
	In Out	In Out	Printing	Binding	
4	0 -20	20 - 80	0	20	
1	20 - 50	80 - 160	0	0	
3	50 -100	160 -250	0	0	
2	100 - 220	250 - 350	0	0	
5	220 - 310	350 - 380	0	0	
6	310 - 410	410 - 420	10	30	

General form

Jobs 1 2 . . . n Mac A $a_1 a_2 a_2 a_n$ Mac B $b_1 b_2 a_2 b_n$ Mac C $c_1 c_2 a_2 b_n$ Solution Procedure

If minimum among a_i / among c_i is greater than or equal to the maximum among c_i then we can reduce this to an n job – 2 machine problem as below:

Introduce two fictitious machines G and H whose processing times are defined by $g_i = a_i + b_i \& h_i = b_i + c_i$ Then proceed as in the above case

Processing n jobs through m machines

General form

•••	a _n
••	b
	f _n
	•••

If minimum among a_i / among f_i is greater than or equal to the maximum among b'_i , c_i , ..., e_i then we can reduce this to an n job – 2 machine problem as below

Introduce two fictitious machines G and H whose processing times are defined by

 $g_{i} = a_{i} + b_{i} + \dots + e_{i} \&$ $h_{i} = b_{i} + c_{i} + \dots + fi$ Then proceed as in the above case

Determine the optimum sequence for the 4 job – 6 machine problem. Machines M_1 M_2 M_3 M_4 M_5 M_6 18 87 2 10 25 Job A 17 696819 Job B 11 5 8 5 7 15 Job C 20434812 Job D Min of $M_1 = 11$, Max M_2 , M_3 , M_4 , $M_5 = 10$, Min $M_6 = 12$

Condition for fictitious Machines is satisfied.

	Jobs	AB	С	D
Fictitious	Machine G	45 46	36	39
	Machine H	52 48	40	31

Sequence

Processing

Jobs	M ₁	M ₂	M ₃	M ₄	M ₅	M ₆
	In Out					
С	0 -11	11 -16	16 -24	24 -29	29 -36	36 -51
A	11 -29	29 -37	37 -44	44 -46	46 -56	56 -81
B	29 -46	46 -52	52 -61	61 -67	67 -75	81 -100
D	46 -66	66 -70	70 -73	73 -77	77 -85	100 -112

Total elapsed time = 112 hrs.

Idle times M1 to M6 are 46, 89, 85, 95,79,41 respectively

