'An order is to be obsenved in all things'

A STUDY ON SEQUENCING MODELS

BY

JYOTHY THOMAS
Assistant Professor
Department of Mathematics
Deva Matha College
Kuravilangad

Definition: Selection of an appropriate order for a series of job to be done on a number of service facilities so as to optimize the total effectiveness (may be time, cost etc which is a function of the order)

Number of machines
Processing order Processing time Idle time on a machine
Total elapsed time No Passing Rule

=Machine operations in Fothe

- Machine order fixed - Turning Threading Knurling Job order 123456132456 . . .

234561243561 ...
345612354612 ...
456123465123 . . .
561234516234 . . .
612345621345 . . . Total 6! Orders

- From these find the order which minimizes time/ cost
This is a 6 job - 3 machine problem

Sequencing in computer systems

- n jobs on m machines
(n!) ${ }^{m}$ possible sequences
Find the sequence minimizing the total time When $\mathrm{n}=4, \mathrm{~m}=5$ there are
$(4!)^{5}=7962624$ possible sequences
Enumeration impossible for even smaller m and n

\equiv Processing n jobs through ${ }^{2} \equiv$ machines $=$

General Form

$$
\begin{array}{l|cccc}
\text { Jobs } & 1 & 2 & \ldots & n \\
\hline \operatorname{Mac} A & a_{1} & a_{2} & \ldots & a_{n} \\
\operatorname{Mac} B & b_{1} & b_{2} & \ldots & b_{n}
\end{array}
$$

Gnatt Chart

Consider the two job Two machine problem

Job	J_{1}	$\mathrm{~J}_{2}$
Machine A	3	5
Machine B	5	4

	$\mathrm{J}_{1}(3)$	
A	$\mathrm{J}_{2}(4)$	$\mathrm{J}_{1}(5)$

Total Time $=14$

Illustration:A book binder has a printing press, a binding machine \& the manuscripts of different books. The processing times are given. Determine the optimum sequence.

BOOK	1	2	3	4	5	6
Printing Time (hrs)	30	120	50	20	90	100
Binding Time (hrs)	80	100	90	60	30	10

Eptifinu sequence Algofithm

Find the smallest processing time. If it is for first machine, place the job in first available position of the sequence. If it is for second machine place the job in the last available position of the sequence. If there is a tie

OOptimum sequence Algoftitn =

(i) among the two machines ($a_{k}=b_{r}$) place job corresponding to first machine (job k) in first available position of the sequence and the job corresponding to second machine (job r) in the last available position of the sequence.
(ii) among same machine $\left(a_{k}=a_{r} / b_{k}=b_{r}\right)$, break the tie arbitrarily

Fptimum sequence Algofithem
Cross off the jobs already assigned and repeat the above procedure

Calculate the idle times and total elapsed time

Books	Printing In Out	Binding Out In		Idle times	
Printing	Binding				
4	$0-20$	$20-80$	0	20	
1	$20-50$	$80-160$	0	0	
3	$50-100$	$160-250$	0	0	
2	$100-220$	$250-350$	0	0	
5	$220-310$	$350-380$	0	0	
6	$310-410$	$410-420$	10	30	

General form

Jobs	1	2	\ldots	n
Mac A	a_{1}	a_{2}	\ldots	a_{n}
Mac B	b_{1}	b_{2}	\ldots	b_{n}
Mac C	c_{1}	c_{2}	\ldots	C_{n}

- Solution Procedure

If minimum among $a_{i} /$ among c_{c} is greater than or equal to the maximum among c; then we can reduce this to an n job -2 machine problem as below:

Introduce two fictitious machines G and H whose processing times are defined by

$$
g_{i}=a_{i}+b_{i} \& h_{i}=b_{i}+c_{i}
$$

Then proceed as in the above case

EProsessing \bar{n} jobs throught

 machines- General form

Jobs	1	2	\ldots	n
Mac A	a_{1}	a_{2}	\ldots	a_{n}
Mac B	b_{1}	b_{2}	\ldots	b_{n}
\ldots	\ldots	\ldots		

Mac $F \quad f_{1} \quad f_{2} \ldots f_{n}$

- Solution Procedure

If minimum among a_{i} / among f_{i} is greater than or equal to the maximum among $b_{i}, c_{i}, \ldots, e_{i}$ then we can reduce this to an n job -2 machine problem as below

Introduce two fictitious machines G

 and H whose processing times are defined by$\mathrm{g}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}}+\mathrm{b}_{\mathrm{i}}+\ldots+\mathrm{e}_{\mathrm{i}} \&$
$h_{i}=b_{i}+c_{i}+\ldots+f i$
Then proceed as in the above case
 4 job - 6 machine problem.

$$
\begin{array}{l|rllllll}
\text { Machines } & M_{1} & M_{2} & M_{3} & M_{4} & M_{5} & M_{6} \\
\hline \text { Job A } & 18 & 8 & 7 & 2 & 10 & 10 & \\
\text { Job B } & 17 & 6 & 9 & 6 & 8 & 19 & \\
\text { Job C } & 11 & 5 & 8 & 5 & 7 & 15 & \\
\text { Job D } & 20 & 4 & 3 & 4 & 8 & 12 & \\
\hline
\end{array}
$$

Min of $M_{1}=11, \operatorname{Max} M_{2}, M_{3 \prime}, M_{4^{\prime}} M_{5}=10$, Min $M_{6}=12$

Condition for fictitious Machines is satisfied.

Jobs A B C D

Fictitious Machine G 45463639
Machine H $\quad 524840 \quad 31$
Sequence

Jobs	M_{1} In Out	M_{2} In Out	M_{3} In Out	M_{4} In Out	M_{5} In Out	M_{6} In Out
C	$0-11$	$11-16$	$16-24$	$24-29$	$29-36$	$36-51$
A	$11-29$	$29-37$	$37-44$	$44-46$	$46-56$	$56-81$
B	$29-46$	$46-52$	$52-61$	$61-67$	$67-75$	$81-100$
D	$46-66$	$66-70$	$70-73$	$73-77$	$77-85$	$100-112$

Total elapsed time $=112 \mathrm{hrs}$

Idle times M1 to M6 are 46, 89, 85, 95,79,41 respectively

